Three Dimensional Viewing

Dr. S.M. Malaek Assistant: M. Younesi

3D Viewing The steps for computer generation of a view of a three dimensional scene are somewhat analogous to the processes involved in taking a photograph.

Camera Analogy

- 1. Viewing position
- 2. Camera orientation
- 3. Size of clipping window

Viewing Pipeline

 $\mathcal{L}_{\mathcal{A}}$ The general processing steps for modeling and converting a world coordinate description of a scene to device coordinates:

Viewing Pipeline
1. Construct the shape of individual objects in a scene within modeling coordinate, and place the objects into appropriate positions within the scene (world coordinate).

Viewing Pipeline
2. World coordinate positions are converted to viewing coordinates.

Viewing Pipeline
3. Convert the viewing coordinate description of the scene to coordinate positions on the projection plane.

Viewing Pipeline
4. Positions on the projection plane, will then mapped to the Normalized coordinate and output device.

Viewing Coordinates

 Viewing coordinates system described 3D objects with respect to a viewer.

A Viewing (Projector) plane is set up perpendicular to $z_{\rm v}$ and aligned with (x_v, y_v) .

Specifying the Viewing Coordinate System (View Reference Point)

- We first pick a world coordinate position called **view reference point** (origin of our viewing coordinate system).
- P_0 is a point where a camera is located.
- \mathbb{R}^2 The view reference point is often chosen to be close to or on the surface of some object, or at the center of a group of objects.

Position

Specifying the Viewing Coordinate $\mathbf{System}\ (\mathbf{Z}_\mathbf{v}\mathbf{A}\mathbf{x}\mathbf{is})$

- Next, we select the positive direction for the viewing \mathbf{z}_v axis, by specifying the **view plane normal vector**, **N**.
- \mathbb{R}^2 ■ The direction of N, is from the **look at point** (L) to the view reference point.

Specifying the Viewing Coordinate $\mathbf{System}\left(\mathbf{y}_{\mathbf{v}}\ \mathbf{A}\mathbf{x}\mathbf{is}\right)$

- \mathbb{R}^2 **Finally, we choose the** *up direction* for the view by specifying a vector *V*, called the *view up vector view up vector*.
- \mathbb{R}^2 This vector is used to establish the positive direction for the $\mathbf{y}_\mathbf{v}$ axis.
- $\mathcal{L}_{\mathcal{A}}$ *V* is projected into a plane that is perpendicular to the normal vector.

Look and Up Vectors

 \Box the direction the camera is pointing

F.

- \Box three degrees of freedom; can be any vector in 3-space
	- \Box determines how the camera is rotated around the *Look vector*
	- \Box for example, whether you're holding the camera horizontally or vertically (or in between)
	- \Box projection of *Up vector* must be in the plane perpendicular to the look vector (this allows *Up vector* to be specified at

Specifying the Viewing Coordinate System (**x**_v Axis)

 \mathbb{R}^2 ■ Using vectors **N** and **V**, the graphics package computer can compute a third vector **U**, perpendicular to both **N** and **V**, to define the direction for the $\mathbf{X}_{\mathbf{v}}$ axis.

- **The View Plane** Graphics package allow users to choose the position of the view plane along the $z_{\rm v}$ axis by specifying the **view plane distance** from the viewing origin.
- **The view plane is always parallel to the** x_0y_0 **plane.**

Obtain a Series of View To obtain a series of view of a scene, we can keep the view reference point fixed and **change** the direction of **N**.

Simulate Camera Motion To simulate camera motion through a scene, we can keep **N fixed** and **move** the view reference **point** around.

Transformation from World to Viewing Coordinates

Viewing Pipeline $\mathcal{L}_{\mathcal{A}}$ **Before object description can be projected to the view** plane, they must be transferred to viewing coordinates. World coordinate positions are converted to viewing coordinates.

Transformation from World to Viewing Coordinates

Transformation sequence from world to viewing coordinates:

Transformation from World to Viewing Coordinates Another Method for generating the rotation-

transformation matrix is to calculate unit **UVI** vectors and form the composite rotation matrix directly:

$$
\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (n_1, n_2, n_3)
$$
\n
$$
\mathbf{u} = \frac{\mathbf{V} \times \mathbf{N}}{|\mathbf{V} \times \mathbf{N}|} = (u_1, u_2, u_3)
$$
\n
$$
\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_1, v_2, v_3)
$$
\n
$$
\mathbf{R} = \begin{bmatrix} u_1 & u_2 & u_3 & 0 \\ v_1 & v_2 & v_3 & 0 \\ n_1 & n_2 & n_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\boxed{\mathbf{M}_{WC, VC} = \mathbf{R} \cdot \mathbf{T}}
$$

Projection

ing
Ma Viewing 3D objects on a 2D display requires a mapping from 3D to 2D.

Projection

- **Projection** can be defined as a mapping of point $P(x,y,z)$ onto its image $P'(x', y', z')$ in the projection plane. *^P*′(*x*′, *^y*′,*z*′)
- The mapping is determined by a *projector* that passes through P and intersects the view plane (P').

Projection

- Projectors are lines from **center (reference) of projection** through each point in the object.
- The result of projecting an object is dependent on the spatial relationship among the projectors and the view plane.

Parallel Projection Parallel Projection : Coordinate position are transformed to the view plane along **parallel lines**.

Perspective Projection Perspective Projection: Object positions are transformed to the view plane along lines that converge to the **projection reference (center) point**.

Parallel Projection

- Coordinate position are transformed to the view plane along parallel lines.
- Center of projection at infinity results with a parallel projection.
- Г A parallel projection preserves relative proportion of objects, but dose not give us a realistic representation of the appearance of object.

Perspective Projection $\mathcal{L}_{\mathcal{A}}$ **• Object positions are transformed to the view plane** along lines that converge to the **projection reference (center) point .**

 Produces realistic views but does not preserve relative proportion of objects.

Perspective Projection Projections of distant objects are smaller than the projections of objects of the same size are closer to the projection plane.

Parallel and Perspective Projection

perspective

Parallel Projection

Parallel Projection

- **Projection vector:** Defines the direction for the projection lines (projectors).
- $\mathcal{L}_{\mathcal{A}}$ *Orthographic Projection: Projectors (projection vectors)* are **perpendicular** to the projection plane.
- $\mathcal{L}_{\mathcal{A}}$ *Oblique Projection*: Projectors (projection vectors) are *not* perpendicular to the projection plane.

Orthographic Parallel Projection

Orthographic Parallel Projection Orthographic projection used to produce the **front**, **side**, and **top** views of an object.

Orthographic Parallel Projection *Front*, *side*, and *rear* orthographic projections of an object are called *elevations*.

Top orthographic projection is called a *plan* view.

Orthographic Parallel Projection

Multi View Orthographic
Orthographic Parallel Projection *Axonometric orthographic Axonometric orthographic* projections display more than one face of an object.

Orthographic Parallel Projection

- *Isometric Projection*: Projection plane intersects each coordinate axis in which the object is defined (principal axes) at the same distant from the origin.
- \mathbb{R}^2 Projection vector makes equal angles with all of the **three principal axes**.

Isometric projection is obtained by **aligning** the **projection vector** wit h the **cube dia gonal**.

Orthographic Parallel Projection *Dimetric Dimetric Projection Projection*: Projection vector makes **equal angles** with exactly **two** of the principal axes.

Orthographic Parallel Projection *Trimetric Projection Trimetric Projection*: Projection vector makes un**equal angles** with the three principal axes.

Orthographic Parallel Projection

Orthographic Parallel Projection Transformation

 \mathbb{R}^2 Convert the **viewing coordinate** description of the scene to coordinate positions on the **Orthographic parallel projection plane**. **Orthographic Parallel Projection Transformation**

Orthographic Parallel Projection Transformation

Since the view plane is placed at position z_{vp} along the z_{v} axis. Then any point (x,y,z) in viewing coordinates is transformed to projection coordinates as:

Oblique Parallel Projection

Oblique Parallel Projection

- Projection are **not** perpendicular to the viewing plane.
- Angles and lengths are preserved for faces parallel the plane of projection.
- Preserves 3D nature of an object.

Oblique Parallel Projection Transformation

 \mathbb{R}^2 Convert the **viewing coordinate** description of the scene to coordinate positions on the **Oblique parallel projection plane**. **Oblique Parallel Projection Transformation**

Oblique Parallel Projection P Point (x,y,z) is projected to position (x_p, y_p) on the view plane.

F.

- F. **Projector (oblique) from** (x,y,z) **to** (x_p,y_p) **makes an angle** α with the line (**L**) on the projection plane that joins **(x ^p,y p)** and **(x,y).**
- Ц, **Line L** is at an angle φ with the horizontal direction in the projection plane.

Oblique Parallel Projection

z

 $y_p = y + L \sin \varphi$ $x_p = x + L \cos \varphi$ $= \nu +$ $= x +$

$$
\tan \alpha = \frac{z}{L} \qquad L = \frac{z}{\tan \alpha} = zL_1
$$

$$
x_p = x + z(L_1 \cos \varphi)
$$

$$
y_p = y + z(L_1 \sin \varphi)
$$

$$
\mathbf{M}_{Parallel} = \begin{bmatrix} 1 & 0 & L_1 \cos\varphi & 0 \\ 0 & 1 & L_1 \sin\varphi & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Oblique Parallel Projection *Orthographic Projection: Orthographic Projection:* $L_{\rm l}$ $=0$ $\alpha = 90^{\circ}$ y_v (x_p, y_p) X_{ν} $x_{\scriptscriptstyle p}$ $= \chi$ $y_p = y$ α =, (x,y,z) *L* (x, y) ⎡ ⎤ 10 $\pmb{0}$ $\overline{\mathbf{0}}$ ⎥ 0001⎥ $=$ ⎥ **^M***Orthographic Parallel* 000 $\pmb{0}$ ⎥ ⎣ ⎦ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ 1

Oblique Parallel Projection Angles, **distances**, and **parallel lines** in the plane are projected accurately.

Cavalier Projection Cavalier Projection:

 $\phi = 30^{\circ}$ and 45 $^{\circ}$ = 30 *and* 45

$$
\tan \alpha = 1
$$

$$
\alpha = 45^{\circ}
$$

- \mathbb{R}^2 Preserves lengths of lines perpendicular to the viewing plane.
- \mathbb{R}^2 3D nature can be captured but shape seems distorted.
- \mathbb{R}^2 Can display a combination of front, and side, and top views.

Cabinet Projection Cabinet Projection:

 $\phi = 30^{\circ}$ and 45° tan α = 30 *and* 45

$$
\tan \alpha = 2
$$

$$
\alpha \approx 63.4^{\circ}
$$

- **Lines perpendicular to the viewing plane project at** $\frac{1}{2}$ **of their length**.
- A more realistic view than the cavalier projection.
- Can display a combination of front, and side, and top views.

Cavalier & Cabinet Projection

- $\mathcal{L}_{\mathcal{A}}$ In a perspective projection, the center of projection is at a finite distance from the viewing plane.
- Produces realistic views but does not preserve relative proportion of objects
- The size of a projection object is inversely proportional to its distance from the viewing plane.

- **Perspective Projection Parallel lines that are not parallel to the viewing** plane, **converge** to a *vanishing point*.
- A vanishing point is the projection of a point at infinity.

Vanishing Points

- Each set of projected parallel lines will have a separate vanishing points.
- There are infinity many **general** vanishing points.

- The vanishing point for any set of lines that are parallel to one of the principal axes of an object is referred to as a **principal vanishing point**.
- We control the number of principal vanishing points (one, two, or three) with the orientation of the projection plane.

Perspective Projection The number of principal vanishing points in a projection is determined by the number of principal axes **intersecting** the view plane.

One Point Perspective One Point Perspective **(** *z***-axis vanishing point)**

Two Point Perspective Two Point Perspective **(z, and x-axis vanishing points)**

z

x

Two Point Perspective Two Point Perspective

Three Point Perspective Point Perspective **(z, x, and y-axis vanishing points)**

One-Point Perspective Projection

Two-Point Perspective Projection

Tree-Point Perspective Projection

Perspective Projection Transformation

 Convert the **viewing coordinate** description of the scene to coordinate positions on the **perspective projection plane**. **Perspective Projection Transformation**

 Suppose the projection reference point at position z_{prp} along the z_{v} axis, and the view plane at z_{vp} . **Perspective Projection Transformation**

Perspective Projection Transformation *Special Cases:* z_{v} = 0 $\bigg($ ⎞ $\bigg($ ⎞ *z* $\left(\frac{z_{_{\it p \it r \it p}} - z_{_{\it v \it p}}}{z - z}\right) = x \left(\frac{d}{z - z}\right)$ *z z* ⎜ ⎟ $\ddot{}$ ⎟ $=x\frac{z_{\textit{prp}}-z_{\textit{prp}}}{x}$ *vp prp vp p* ⎜ $\Big| = x \Big| \frac{1}{z-1}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array}$ ⎟ $x = x$ *p z z z z z z z* ⎝ ⎠ ⎝ ⎠ − *prp prp* \int \setminus $\sqrt{2}$ \setminus $\bigg($ ⎞ $\bigg($ ⎞ 1 *d y z* ⎜ $\overline{}$ ⎜ $\overline{}$ *z z* ⎜ ⎟ ⎜ ⎟ $= \sqrt{\frac{\zeta_{\textit{\tiny{prp}}}}{n}}$ *prp prp vp p* $x_p = x$ $\frac{p_1}{p_2} = x$ $\frac{p_2}{p_1} = x$ $\frac{p_3}{p_2} = x$ $\frac{p_4}{p_3} = x$ $\frac{p_5}{p_4} = x$ $\frac{p_6}{p_5} = x$ ⎜ $\Big| = y \Big| = \frac{y}{z-1}$ ⎜ $y_{n} = y$ ⎜ $= x \frac{z}{z}$ *x* ⎜ ⎟ $= x \left(\frac{z}{z - z_{\text{num}}} \right) = x \left(\frac{z}{z} \right) z_{\text{num}} - 1$ *p z z z z z z z z* ⎝ ⎠ \setminus ⎠ *p z z* − \setminus ⎠ \setminus \int *z z z z prp prp* − *prp prp* $\sqrt{2}$ \setminus $\sqrt{2}$ \setminus 1 *z* ⎜ $\overline{}$ ⎜ $\overline{}$ *prp* $y_p = y$ ⎜ $= y \frac{1}{z/z_{\rm max}}$ *y* ⎜ ⎟ $= y \left(\frac{1}{z - z_{\text{max}}} \right) = y \left(\frac{1}{z/z_{\text{max}} - 1} \right)$ *p* \setminus \int ⎝ \int *z z z z* − *prp prp* $z=0$ $P=(x,y,z)$ $(0,0,Z_{\text{prp}})$ $\mathbf{d}_{\mathbf{n}}$ Z

Perspective Projection Transformation

Special Cases: Special Cases: The projection reference point is at the viewing coordinate origin: $\begin{bmatrix} z \end{bmatrix} = 0$ \sqrt{z} _{prp}

$$
x_{p} = x \left(\frac{z_{_{prp}} - z_{_{vp}}}{z - z_{_{prp}}} \right) = x \left(\frac{d_{p}}{z - z_{_{prp}}} \right)
$$

$$
y_{p} = y \left(\frac{z_{_{prp}} - z_{_{vp}}}{z - z_{_{prp}}} \right) = y \left(\frac{d_{p}}{z - z_{_{prp}}} \right)
$$

$$
x_p = x \left(\frac{-z_{vp}}{z}\right) = x \left(\frac{-1}{z/z_{vp}}\right)
$$

$$
y_p = y \left(\frac{-z_{vp}}{z}\right) = y \left(\frac{-1}{z/z_{vp}}\right)
$$

Summery

